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ABSTRACT
Joint blind source separation (JBSS) is a powerful framework for ex-
tracting latent sources from multiple datasets while keeping their co-
herence across multiple linked datasets. Algorithms for JBSS, while
offering the capability of improved estimation performance, often
incur high computational complexity and hence are not scalable to
studies with hundreds or thousands of datasets. In this paper, we
propose a simple yet efficient method for source separation that ex-
ploits both the correlation among sources within each dataset and
across the datasets. The proposed method, named reference-guided
component analysis (RGCA), uses source templates as references to
(i) guide the separation of sources on each dataset and (ii) establish
source dependence and automatically align them across the datasets.
In addition, we promote independence among latent sources within
each dataset by adding orthogonal constraints on the demixing vec-
tors. The resulting optimization admits an analytic solution that en-
ables extremely fast implementation of RGCA. Our numerical re-
sults demonstrate that RGCA obtains competitive performance while
having a runtime far superior to other JBSS methods. The proposed
method provides a robust and scalable solution to multi-subject func-
tional magnetic resonance imaging (fMRI) studies, enabling joint
analysis of thousands of subjects within a few minutes.

Index Terms— blind source separation, constrained latent vari-
able analysis, multi-subject fMRI analysis.

1. INTRODUCTION

Blind source separation (BSS) is the problem of recovering a set of
source signals from a mixture of signals, without prior knowledge
about the sources or the mixing process. When multiple datasets
are analyzed as a group, joint blind source separation (JBSS) can
improve upon BSS by exploiting the statistical dependence among
latent sources across the datasets. Example applications of JBSS
include the joint analysis of multi-subject data in medical studies [1–
4] or the separation of speech and audio signals in multiple frequency
bands [5–8]. In such problems, along with the correspondence of the
sources within each subject/frequency band, there is often a strong
dependence among latent sources across multiple subjects/frequency
bands. The JBSS framework can leverage this additional diversity to
obtain better performance compared with BSS applied to individual
datasets separately.

A widely-used JBSS method is group ICA [1], which concate-
nates the datasets and applies principal component analysis (PCA)
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followed by independent component analysis (ICA) to extract group
independent components (IC). These ICs can then be used to com-
pute the subject-specific components by back-reconstruction, using
dual or other flavors of regression. Nonetheless, group ICA assumes
that there is a common subspace among all datasets and hence, its
ability to capture the variability across datasets can be limited [9].
Another powerful approach to JBSS is independent vector analysis
(IVA), which generalizes ICA by exploiting the statistical dependen-
cies across datasets [10,11]. By modeling the corresponding sources
across datasets (grouped into a “source component vector” or SCV)
with a multivariate distribution, IVA can exploit the statistical de-
pendence within each SCV and thus better model and exploit the
variability in the data [12,13]. The disadvantage of IVA, however, is
the high computational cost such that it quickly becomes intractable
as the number of datasets increases. Recently, Gabrielson et al. [14]
introduced IVA regression (regIVA) as an efficient method to extend
an IVA-based model to a large-scale JBSS. Starting with a manage-
ably small subset of the datasets, regIVA estimates regressor sources
from the subset that capture variability across the datasets and then
estimates sources in the remaining datasets using multilinear regres-
sion. It has been demonstrated in [14] that regIVA retains very simi-
lar source separation performance to the computationally expensive
IVA algorithm. Nonetheless, there are no guarantees of indepen-
dence among the sources within each dataset since the regressed
sources are estimated separately from each other.

JBSS methods can be improved in various ways by leveraging
prior knowledge about the sources or the mixing matrices. In the
early stages, a simple model-based method for task-related func-
tional magnetic resonance imaging (fMRI) data analysis, the gen-
eral linear model (GLM) [15, 16], uses user-defined mixing matri-
ces to regress the spatial maps. Since this approach relies solely on
the specification of the mixing matrices, it is sensitive to each prob-
lem setting and does not take into account the variability in different
datasets. Importantly, the GLM cannot be applied to resting-state
fMRI data, a dominant type of data recently, since there is no spec-
ification of time course models. Another more attractive approach
is using rough templates of the sources [17, 18] or the mixing ma-
trix [19,20] as constraints in optimizing the cost function. A reliable
set of references guides the optimization to avoid sub-optimal so-
lutions and increase the quality of source separation. Examples of
reference-constrained methods for source separation are constrained
ICA [21, 22] and constrained IVA [23, 24]. However, these methods
inherit the drawback of their unconstrained versions, e.g., the lack
of capturing the variability for group ICA or the high computational
cost for IVA. Thus, there is a need for a constrained method that is
able to capture the variability across datasets while being computa-
tionally inexpensive.



In this paper, we propose a simple yet efficient method for source
separation of multiple datasets that uses source templates as refer-
ences. The proposed method, named reference-guided component
analysis (RGCA), simultaneously considers two objectives: (i) best
approximating the data using the references, and (ii) enforcing the
independence among latent sources within each dataset by adding
orthogonal constraints on the demixing vectors. The resulting opti-
mization admits an analytic solution that enables extremely efficient
implementation of RGCA. Our numerical results demonstrate that
RGCA obtains competitive performance while having a runtime far
superior to other JBSS methods. The proposed method offers a ro-
bust and scalable solution to group fMRI studies, enabling joint anal-
ysis of thousands of subjects within a few minutes. The rest of this
paper is organized as follows. Section 2 provides a brief overview
of the background of JBSS. Then, our proposed method is described
in Section 3, followed by numerical results that demonstrate the per-
formance of different JBSS algorithms for simulated fMRI-like data
in Section 4.

2. PRELIMINARIES

Notation: Throughout the paper, we use boldfaced symbols to de-
note vectors and matrices, while the elements of a vector/matrix are
unbold. The notation (·)⊤ denotes the transpose of a matrix. In ad-
dition, In denotes the n × n identity matrix and 0m×n denotes the
m× n matrix of all zeros. Given an n-dimensional vector x, xi de-
notes its ith element and diag(x) denotes the n×n diagonal matrix
with the corresponding diagonal entries x1, . . . , xn.

Consider K datasets, each formed by V samples of linear mix-
tures of N independent sources

x[k](v) = A[k]s[k](v), (1)

for k = 1, . . . ,K and v = 1, . . . , V . Here, A[k] ∈ RP×N (P ≥ N)

is an unknown mixing matrix with full column rank and s[k](v) =

[s
[k]
1 (v), . . . , s

[k]
N (v)]⊤ is the vth sample of the corresponding source

vector of the kth dataset. In its matrix form, (1) can be represented as
X [k] = A[k]S[k], where X [k] = [x[k](1), . . . ,x[k](V )] ∈ RP×V

and S[k] = [s[k](1), . . . , s[k](V )] ∈ RN×V . The goal of JBSS
is to recover the original source components S[k] from the mixture
signals X [k], for all k = 1, . . . ,K. When applying JBSS to multi-
subject fMRI analysis, each dataset often corresponds to one subject
with source matrices corresponding to subject-specific networks and
mixing matrices corresponding to their associated time courses.

In the estimation of the source components, it is convenient to
introduce the concept of source component vector (SCV). By stack-
ing the nth source component across K datasets, the nth SCV is
defined as a K-dimensional random vector sn = [s

[1]
n , . . . , s

[K]
n ]⊤.

An appropriate multivariate probability density function (pdf) of the
SCV can take all order statistical information within and across the
K datasets into account. Additionally, we define demixing matrices
of form W [k] = [w

[k]
1 , . . . ,w

[k]
N ]⊤ ∈ RN×P . One common as-

sumption in blind source separation is that the underlying sources are
mutually statistically independent, which enables identifiability up
to permutation and scaling ambiguities. This implies that if the data
matrix X is standardized and pre-whitened, i.e., XX⊤ = V IP ,
then the corresponding mixing (or demixing) matrix A (or W ) has
approximately orthonormal columns (or rows) [25], which is the mo-
tivation of our proposed algorithm in the next section.

3. REFERENCE-GUIDED COMPONENT ANALYSIS

This section describes our proposed algorithm for source separation
using reference signals as prior information. We leverage the refer-
ences to guide the separation of sources in each dataset separately.
This promotes a simple analytic solution for individual datasets
while effectively retaining the source dependence across datasets
via the common use of reference guidance. As a by-product, the
proposed algorithm automatically aligns source components across
datasets since each component is associated with only one reference
signal. In the following, we present our reference-guided approach
to separating sources in a single dataset.

Given a whitened dataset X ∈ RP×V and the reference signals
R ∈ RM×V , we aim to find a semi-orthogonal demixing matrix W
that maps X to R:

min
W∈RM×P

1

2V
∥R−WX∥2F s.t. WW⊤= IM , (2)

where ∥·∥F denotes the Frobenius norm of a matrix. As mentioned
earlier, the orthogonal constraint on W facilitates the uncorrelat-
edness among the estimated sources. At the same time, minimiz-
ing the distance between the sources and the references provides
a better model match such as statistical properties of the sources.
Problem (2) is well-known as the orthogonal Procrustes problem
[26], which is equivalent to finding the nearest orthogonal matrix to
RX⊤. Let RX⊤ = UΣV ⊤ be the singular value decomposition
(SVD) such that U ∈ RM×M and V ∈ RP×P are orthogonal ma-
trix, and Σ ∈ RM×P with diagonal entries being the singular values
of RX⊤. It can be shown that (2) admits a closed form solution
given by Ŵ = UV ⊤.

In many real-world applications, the orthogonal constraint is of-
ten too strict and one would like to relax it in order to obtain a more
practical solution. That motivates the following regularized version
of (2):

min
W∈RM×P

1

2V
∥R−WX∥2F +

λ

4

∥∥∥WW⊤− IM

∥∥∥2

F
, (3)

where λ > 0 is a regularization parameter that controls how close
W is to a semi-orthogonal matrix. Let f(W ) be the objective func-
tion in (3). The gradient of f is given by

∇f(W ) =
1

V
(WX −R)X⊤+ λ(WW⊤− IM )W

= λWW⊤W + (1− λ)W − 1

V
RX⊤. (4)

In the last equality, we use the fact that the data is whitened. Setting
the derivative ∇f(W ) to 0, we obtain an analytic solution for (3)
as follows. Let 1

V
RX⊤ = UΣV ⊤ and W = UWΣWV ⊤

W be the
SVDs of the corresponding matrices. Substituting the SVDs back
into (4), we obtain

∇f(W ) = UW

(
λΣ3 + (1− λ)Σ

)
V ⊤

W −UΣV ⊤.

Due to the uniqueness of the SVD, ∇f(W ) = 0 is equivalent to
UW = U , VW = V , and for i = 1, . . . ,M :

λ
(
σi(W )

)3
+ (1− λ)σi(W )− σi(RX⊤) = 0, (5)

where σi(W ) denotes the ith largest singular value of W .

Lemma 1. The depressed cubic equation (5), w.r.t. σi(W ), has
exactly one real positive root for any λ > 0.
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(a) Template covariance matrix
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(b) Sample time course correlation
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(c) SCV — Low variability (d) SCV — High variability

Fig. 1: Visualization of (a) the covariance matrix of the template sources (with N = 7 and V = 57878), (b) an example of the correlation
among the time courses used to mix the sources (with P = 10), and the full SCV covariance matrices generated based on (7) in (c) low
variability case with φ ∈ [0.1, 0.3] and (d) high variability case with φ ∈ [0.3, 0.5].

Algorithm 1: Reference-Guided Component Analysis (RGCA)

Input: X ∈ RP×V ,R ∈ RM×V , λ > 0
Output: W ∈ RM×P ,A ∈ RP×M

1: Compute Q = 1
V
RX⊤ ▷ O(MPV )

2: Perform the SVD Q = UΣV ⊤ ▷ O(M2P )
3: for i = 1 : M do
4: Solve the depressed cubic equation (5) to find the unique real

positive root σi(W ) ▷ O(1)

5: W = U diag(σ1(W ), . . . , σM (W ))V ⊤ ▷ O(M2P )
6: A = W⊤(WW⊤)−1 ▷ O(M2P )

The proof of this lemma is a straightforward consequence of Vieta’s
formulas [27] and is omitted in this paper due to space limitation. We
summarize the new algorithm, Reference-Guided Component Anal-
ysis (RGCA) in Algorithm 1. When K datasets are available, one
can apply RGCA to each dataset separately. The overall complexity
of the algorithm is O(KMPV +KM2P ).

Remark 1. An alternative formulation of (3) is given by

min
A∈RP×M

1

2V
∥X −AR∥2F +

λ

4

∥∥∥A⊤A− IM

∥∥∥2

F
. (6)

In this view, we aim to find a semi-orthogonal mixing matrix A that
maps R to X . While the analytic solutions differ in general, we
observe the two formulations yield similar performance in practice.

4. NUMERICAL RESULTS

This section compares the performance of the proposed method
with other reference-constrained algorithms for JBSS using simu-
lated fMRI-like data. Our goal is to better understand the behavior
of these algorithms in various settings of fMRI datasets.

4.1. Hybrid Data Setup

Extraction of template sources. We use reference signals ex-
tracted by NeuroMark, i.e., the Neuromark fMRI 1.0 template [28],
which includes 53 fMRI networks and is divided into seven func-
tional domains based on their anatomical and functional properties:
the subcortical (SC), auditory (AUD), sensorimotor (MOT), visual
(VIS), cognitive control (CC), default mode (DMN) and cerebellar
(CB) domains. In the hybrid simulation experiment with varying

numbers of datasets, to reduce the runtime, we only use a subset of
N = 7 templates (with 5 from SC and 2 from AUD). For conve-
nience, we denote the set of N template sources by {rn}Nn=1, each
containing V = 57878 samples with zero mean and unit variance.
Figure 1-(a) shows the correlation among the template sources. Due
to the nature of real fMRI sources, there is a certain level of depen-
dency among the templates, i.e., they are not absolutely independent.

Hybrid source generation. Given N template sources, we gen-
erate V observations of SCVs {Sn}Nn=1 ⊂ RK×V for K datasets
as follows. First, we define a NK-dimensional random vector
z = [z⊤

1 , . . . ,z
⊤
N]

⊤ following a multivariate Gaussian distribu-
tion (MGD) with zero mean and covariance matrix E[zz⊤] =
µQQ⊤+ (1 − µ) blkdiag{QnQ

⊤
n}Nn=1, where the rows of Q ∈

RNK×NK are iid uniformly distributed on the unit sphere in RNK

and µ > 0 controls the correlation across different sources. Here
blkdiag{QnQ

⊤
n}Nn=1 is a NK×NK block diagonal matrix formed

by N square matrices Qn ∈ RK×K whose rows are iid uniformly
distributed on the unit sphere in RK . Next, we use z to generate V
samples of the multivariate noise and partitioning the sample matrix
into N submatrices of dimension K×V , i.e., Z = [Z⊤

1 , . . . ,Z
⊤
N]

⊤.
The nth source data matrix is formed by adding the multivariate
noise Zn to the template rn

Sn =
√

1− φ2
n1Kr⊤

n + φnZn ∈ RK×V , (7)

where φn ∈ [0, 1] controls how close the nth source is to the refer-
ence rn. Figures 1-(c) and (d) depict the SCV covariance matrices of
the simulated fMRI-like data corresponding to two scenarios: (i) low
variability (φ ∈ [0.1, 0.3]), and (iii) high variability (φ ∈ [0.3, 0.5]).
Third, for each of the K datasets, we generate a rectangular mixing
matrix A[k] ∈ RP×N , for P ≥ N being the number of mixtures,
that represents the time courses for different brain components. The
correlation between two time courses within the same domain, e.g.,
SC or AUD, is higher than the one across different domains. Fig-
ure 1-(b) shows the block structure of the time-course covariance
matrix, which reflects the functional domains of the templates (e.g.,
5 sources from SC and 2 sources from AUD). Finally, the mixture
data for each dataset is created by adding white noise to the mixture

X [k] = A[k]S[k] +H ∈ RP×V , k = 1, . . . ,K,

where the entries of H ∈ RP×V are normally distributed N (0, σ2).
The reference signals are taken as M out of the N source templates,
where we consider two cases M = 7 (fully referenced) and M = 5
(partially referenced) in our simulation. In the latter case when M =
5, we remove one reference from SC and one reference from AUD.
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(a) φ ∈ [0.1, 0.3] and M = 7
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(b) φ ∈ [0.3, 0.5] and M = 7
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(c) φ ∈ [0.1, 0.3] and M = 5
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(d) φ ∈ [0.3, 0.5] and M = 5

Fig. 2: Four scenarios of the simulated fMRI-like data with N = 7, P = 10, V = 57878, and µ = 0.3 as the number of datasets K
increases: (a) low variability and fully referenced, (b) high variability and fully referenced, (c) low variability and partially referenced, and
(d) high variability and partially referenced. The error bars represent one standard deviation calculated over 20 runs.
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Fig. 3: Runtime of three compared algorithm in second(s).1 pt-cIVA-
G is the slowest method as its computational complexity increases
quadratically with the number of datasets K. While the complexity
of both regIVA-R and RGCA is linear in K, we highlight that the
proposed RGCA is almost 20 times faster than regIVA-R.

4.2. Compared Methods

We compare our proposed RGCA method with pt-cIVA [24] and a
reference regression based on regIVA [14], which we call “regIVA-
R”. In [24], the authors introduce pt-cIVA for Laplace-distributed
sources that have a better model match for fMRI data but with a very
high computational cost. In this simulation, we implement a faster
Gaussian version, named pt-cIVA-G, that is more suitable for exper-
iments with large numbers of datasets. On the other hand, regIVA is
a fast method since it admits an analytic solution. We note that the
original approach in [14] is fully blind and more general, using SCVs
estimated from a subset of the datasets to estimate sources in the re-
maining datasets. In our context, regIVA-R uses the regIVA cost
function but replaces the regressor SCVs with the user-provided ref-
erences. Finally, for RGCA, we use the regularization value λ = 1
as it yields a good balance between the two costs in (3).

In our simulations, we use the joint inter-symbol-interference
(jISI) [29] as the metric to compare the separation performance of
JBSS methods when the true mixing matrices are known. This is a
normalized score between 0 and 1 that measures how close the esti-
mates are to true mixing matrices subject to permutation and scaling.
Thus, the jISI metric penalizes SCV estimates that are not consis-

1The hardware used in the computational studies is part of the UMBC
High Performance Computing Facility (HPCF). See hpcf.umbc.edu for more
information on HPCF and the projects using its resources.

tently aligned across datasets and a score equal to 0 indicates ideal
separation performance.

4.3. Results

There are four scenarios considered in our evaluation, correspond-
ing to two levels of variability and two cases for the number of tem-
plates used as references (see details in Fig. 2). Overall, pt-cIVA-G
(blue dashed line) yields the best performance, followed by RGCA
(yellow dashed line) and then regIVA-R (red dashed line). When the
variability is low and all templates are used (plot (a)), pt-cIVA-G and
RGCA achieve similarly higher jISI than regIVA-R. However, when
the variability increases (plot (b)), RGCA captures this trend better
and outperforms the other two methods, thanks to the simultaneous
exploitation of source templates and the orthogonality of demixing
matrices. When only 5 out of 7 templates are used (plots (c) and
(d)), we observe that the three algorithms have similar jISI, with
pt-cIVA-G achieving the highest score and regIVA-R yielding the
lowest score. This can be explained by the fact that pt-cIVA-G in-
herits the aforementioned powerful properties of the IVA framework
while the estimated sources from regIVA-R are not necessarily in-
dependent or uncorrelated. It is worthwhile noting that RGCA per-
forms relatively well compared with pt-cIVA-G but has a consider-
ably faster runtime. Figure 3 depicts the outstanding runtime perfor-
mance of RGCA compared with regIVA-R and pt-cIVA-G. Notably,
our algorithm only takes less than half a second to separate 7 sources
in 160 datasets with 57878 samples.

5. CONCLUSION

We presented reference-guided component analysis (RGCA) as an
efficient method for source separation with application in multi-
subject fMRI data analysis. The proposed method leverages prior
information on the sources (templates) as references for the so-
lution and can be solved analytically, facilitating remarkably fast
implementation of RGCA. Simulations with hybrid fMRI-like data
illustrated the separation capability of RGCA while capturing well
the variability among the datasets, compared to prominent JBSS
methods. It is promising that the proposed RGCA can be used on
real fMRI data with thousands of subjects to obtain insightful results
within only a few minutes. Future works will also address how to
divide subjects from large-scale datasets into different homogeneous
subgroups and perform RGCA on each subgroup separately.
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pendent vector analysis with multivariate Gaussian model: A
scalable method by multilinear regression,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. IEEE, 2023, pp. 1–5.

[15] Karl J Friston, Peter Jezzard, and Robert Turner, “Analysis of
functional MRI time-series,” Hum. Brain Mapp., vol. 1, no. 2,
pp. 153–171, 1994.
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Tülay Adali, “Identification of homogeneous subgroups from
resting-state fMRI data,” Sensors, vol. 23, no. 6, pp. 3264,
2023.

[23] Suchita Bhinge, Qunfang Long, Yuri Levin-Schwartz, Zois
Boukouvalas, Vince D Calhoun, and Tülay Adalı, “Non-
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